7 research outputs found

    A trial of topiramate for patients with hereditary spinocerebellar ataxia

    No full text
    Abstract In an open pilot trial, six patients with various hereditary forms of spinocerebellar ataxia (SCA) were assigned to topiramate (50 mg/day) for 24 weeks. Four patients completed the protocol without adverse events. Of these four patients, topiramate was effective for three patients. Some patients with SCA could respond to treatment with topiramate

    Oleic Acid-Containing Phosphatidylinositol Is a Blood Biomarker Candidate for SPG28

    No full text
    Hereditary spastic paraplegia is a genetic neurological disorder characterized by spasticity of the lower limbs, and spastic paraplegia type 28 is one of its subtypes. Spastic paraplegia type 28 is a hereditary neurogenerative disorder with an autosomal recessive inheritance caused by loss of function of DDHD1. DDHD1 encodes phospholipase A1, which catalyzes phospholipids to lysophospholipids such as phosphatidic acids and phosphatidylinositols to lysophosphatidic acids and lysophoshatidylinositols. Quantitative changes in these phospholipids can be key to the pathogenesis of SPG28, even at subclinical levels. By lipidome analysis using plasma from mice, we globally examined phospholipids to identify molecules showing significant quantitative changes in Ddhd1 knockout mice. We then examined reproducibility of the quantitative changes in human sera including SPG28 patients. We identified nine kinds of phosphatidylinositols that show significant increases in Ddhd1 knockout mice. Of these, four kinds of phosphatidylinositols replicated the highest level in the SPG28 patient serum. All four kinds of phosphatidylinositols contained oleic acid. This observation suggests that the amount of oleic acid-containing PI was affected by loss of function of DDHD1. Our results also propose the possibility of using oleic acid-containing PI as a blood biomarker for SPG28

    Investigation of Known Genetic Risk Factors for Primary Open Angle Glaucoma in Two Populations of African Ancestry

    No full text
    PURPOSE. Multiple genes have been associated with primary open angle glaucoma (POAG) in Caucasian populations. We now examine the association of these loci in populations of African ancestry, populations at particularly high risk for POAG. METHODS. We genotyped DNA samples from two populations: African American (1150 cases and 999 controls) and those from Ghana, West Africa (483 cases and 593 controls). Our analysis included 57 single nucleotide polymorphisms (SNPs) in five loci previously associated with POAG at the genome-wide level, including CDKN2B-AS1, TMCO1, CAV1/CAV2, chromosome 8q22 intergenic region, and SIX1/SIX6. We evaluated association in the full datasets, as well as subgroups with normal pressure glaucoma (NPG, maximum IOP ≤21 mm Hg) and high pressure glaucoma (HPG, IOP >21 mm Hg). RESULTS. In African Americans, we identified an association of rs10120688 in the CDNK2B-AS1 region with POAG (P = 0.0020). Several other SNPs were nominally associated, but did not survive correction for multiple testing. In the subgroup analyses, significant associations were identified for rs10965245 (P = 0.0005) in the CDKN2B-AS1 region with HPG and rs11849906 in the SIX1/SIX6 region with NPG (P = 0.006). No significant association was identified with any loci in the Ghanaian samples. CONCLUSIONS. POAG genetic susceptibility alleles associated in Caucasians appear to play a greatly reduced role in populations of African ancestry. Thus, the major genetic components of POAG of African origin remain to be identified. This finding underscores the critical need to pursue large-scale genome-wide association studies in this understudied, yet disproportionately affected population

    Genetic variants and cellular stressors associated with exfoliation syndrome modulate promoter activity of a lncRNA within the LOXL1 locus

    No full text
    Exfoliation syndrome (XFS) is a common, age-related, systemic fibrillinopathy. It greatly increases risk of exfoliation glaucoma (XFG), a major worldwide cause of irreversible blindness. Coding variants in the lysyl oxidase-like 1 (LOXL1) gene are strongly associated with XFS in all studied populations, but a functional role for these variants has not been established. To identify additional candidate functional variants, we sequenced the entire LOXL1 genomic locus (∼40 kb) in 50 indigenous, black South African XFS cases and 50 matched controls. The variants with the strongest evidence of association were located in a well-defined 7-kb region bounded by the 3'-end of exon 1 and the adjacent region of intron 1 of LOXL1. We replicated this finding in US Caucasian (91 cases/1031 controls), German (771 cases/1365 controls) and Japanese (1484 cases/1188 controls) populations. The region of peak association lies upstream of LOXL1-AS1, a long non-coding RNA (lncRNA) encoded on the opposite strand of LOXL1. We show that this region contains a promoter and, importantly, that the strongly associated XFS risk alleles in the South African population are functional variants that significantly modulate the activity of this promoter. LOXL1-AS1 expression is also significantly altered in response to oxidative stress in human lens epithelial cells and in response to cyclic mechanical stress in human Schlemm's canal endothelial cells. Taken together, these findings support a functional role for the LOXL1-AS1 lncRNA in cellular stress response and suggest that dysregulation of its expression by genetic risk variants plays a key role in XFS pathogenesis
    corecore